Figure 1: Blue Noise Plots (left) prevent clutter and provide visually more appealing results than frequently used jitter plots (right). Importantly, Blue Noise Plots are unbiased, in the sense that no data point is ever changed and strictly all points of the sample are presented.
Exploring high-dimensional data is a common task in many scientific disciplines. To address this task, two-dimensional embeddings, such as tSNE and UMAP, are widely used. While these determine the 2D position of data items, effectively encoding the first two dimensions, suitable visual encodings can be employed to communicate higher-dimensional features. To investigate such encodings, we have evaluated two commonly used glyph types, namely flower glyphs and star glyphs. To evaluate their capabilities for communicating higher-dimensional features in two-dimensional embeddings, we ran a large set of crowd-sourced user studies using real-world data obtained from data.gov. During these studies, participants completed a broad set of relevant tasks derived from related research. This paper describes the evaluated glyph designs, details our tasks, and the quantitative study setup before discussing the results. Finally, we will present insights and provide guidance on the choice of glyph encodings when exploring high-dimensional data.
View quality measures compute scores for given views and are used to determine an optimal view in viewpoint selection tasks. Unfortunately, despite the wide adoption of these measures, they are rather based on computational quantities, such as entropy, than human preferences. To instead tailor viewpoint measures towards humans, view quality measures need to be able to capture human viewpoint preferences. Therefore, we introduce a large-scale crowdsourced data set, which contains 58k annotated viewpoints for 3220 ModelNet40 models. Based on this data, we derive a neural view quality measure abiding to human preferences. We further demonstrate that this view quality measure not only generalizes to models unseen during training, but also to unseen model categories. We are thus able to predict view qualities for single images, and directly predict human preferred viewpoints for 3D models by exploiting point-based learning technology, without requiring to generate intermediate images or sampling the view sphere. We will detail our data collection procedure, describe the data analysis and model training and will evaluate the predictive quality of our trained viewpoint measure on unseen models and categories. To our knowledge, this is the first deep learning approach to predict a view quality measure solely based on human preferences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.