In this article, we conduct a comprehensive simulation study for the optimal scores of speaker recognition systems that are based on speaker embedding. For that purpose, we first revisit the optimal scores for the speaker identification (SI) task and the speaker verification (SV) task in the sense of minimum Bayes risk (MBR) and show that the optimal scores for the two tasks can be formulated as a single form of normalized likelihood (NL). We show that when the underlying model is linear Gaussian, the NL score is mathematically equivalent to the PLDA likelihood ratio (LR), and the empirical scores based on cosine distance and Euclidean distance can be seen as approximations of this linear Gaussian NL score under some conditions.Based on the unified NL score, we conducted a comprehensive simulation study to investigate the behavior of the scoring component on both the SI task and SV task, in the case where the distribution of the speaker vectors perfectly matches the assumption of the NL model, as well as the case where some mismatch is involved. Importantly, our simulation is based on the statistics of speaker vectors derived from a practical speaker recognition system, hence reflecting the behavior of the NL scoring in real-life scenarios that are full of imperfection, including non-Gaussianality, non-homogeneity, and domain/condition mismatch.