2021
DOI: 10.21203/rs.3.rs-1103780/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Deep Residual Feature Quantization for 3D Face Recognition

Abstract: 3D face recognition (FR) has been successfully applied using Convolutional neural networks (CNN) which have demonstrated stunning results in diverse computer vision and image classification tasks. Learning CNNs, however, need to estimate millions of parameters that expect high-performance computing capacity and storage. To deal with this issue, we propose an efficient method based on the quantization of residual features extracted from ResNet-50 pre-trained model. The method starts by describing each 3D face u… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 18 publications
0
0
0
Order By: Relevance