In this paper, a new version of the Supervised t-Stochastic Neighbor Embedding (S-tSNE) algorithm is proposed which introduces the use of a dissimilarity measure related to class information. The proposed S-tSNE can be applied in any high dimensional dataset for visualization or as a feature extraction for classification problems. In this study, the S-tSNE is applied to three datasets MNIST, Chest x-ray, and SEER Breast Cancer. The two-dimensional data generated by the S-tSNE showed better visualization and an improvement in terms of classification accuracy in comparison to the original t-Stochastic Neighbor Embedding(t-SNE) method. The results from k-nearest neighbors (k-NN) classification model which used the lower dimension space generated by the new S-tSNE method showed more than 20% improvement on average in accuracy in all the three datasets compared with the t-SNE method. In addition, the classification accuracy using the S-tSNE for feature extraction was even higher than classification accuracy obtained from the original high dimensional data.