Modeling players' behaviors in games has gained increased momentum in the past few years. This area of research has wide applications, including modeling learners and understanding player strategies, to mention a few. In this paper, we present a new methodology, called Interactive Behavior Analytics (IBA), comprised of two visualization systems, a labeling mechanism, and abstraction algorithms that use Dynamic Time Warping and clustering algorithms. The methodology is packaged in a seamless interface to facilitate knowledge discovery from game data. We demonstrate the use of this methodology with data from two multiplayer team-based games: Boom-Town, a game developed by Gallup, and DotA 2. The results of this work show the effectiveness of this method in modeling, and developing human-interpretable models of team and individual behavior.