Abstract. Cochlear models typically use continuous anatomical descriptions and homogenized parameters based on two-dimensional images for describing the organ of Corti. To produce refined models based more closely on the actual cochlear cytoarchitecture, three-dimensional morphometric parameters of key mechanical structures are required. Towards this goal, we developed and compared three different imaging methods: (1) A fixed cochlear whole-mount preparation using the fluorescent dye Cellmask®, which is a molecule taken up by cell membranes and clearly delineates Deiters' cells, outer hair cells, and the phalangeal process, imaged using confocal microscopy; (2) An in situ fixed preparation with hair cells labeled using anti-prestin and supporting structures labeled using phalloidin, imaged using two-photon microscopy; and (3) A membrane-tomato (mT) mouse with fluorescent proteins expressed in all cell membranes, which enables two-photon imaging of an in situ live preparation with excellent visualization of the organ of Corti. Morphometric parameters including lengths, diameters, and angles, were extracted from 3D cellular surface reconstructions of the resulting images. Preliminary results indicate that the length of the phalangeal processes decreases from the first (inner most) to third (outer most) row of outer hair cells, and that their length also likely varies from base to apex and across species.