Brief low-frequency electrical stimulation (ES, 1 h, 20 Hz) of the proximal nerve stump has emerged as a potential adjunct treatment for nerve injury. Despite available experimental and clinical data, the potentials and limitations of the ES therapy still have to be defined using different animal models, types of nerves, and clinical settings. Here, we show that brief ES of the proximal stump of the transected rat femoral nerve causes, as estimated by motion analysis, enhanced functional recovery reaching preoperative levels within 5 months of injury, in contrast to the incomplete restoration in sham-stimulated (SS) animals. The functional advantage seen in ES rats was associated with higher numbers, as compared with SS, of correctly targeted quadriceps motoneurons. In contrast, ES prior to facial nerve suture did not lead to improvement of whisking compared with SS. Lack of functional effects of the treatment was correlated with lack of changes, as compared with SS, in the precision of muscle reinnervation and frequency of abnormally innervated muscle fibers. These results show that ES is an effective therapy in a spinal nerve injury model leading to complete restoration of function. Although this finding and the safety of the procedure are encouraging, the results for the facial nerve model suggest that brief ES may not be a universal treatment for nerve injuries. Anat Rec, 302:1304Rec, 302: -1313Rec, 302: , 2019