Aim:This in-vitro study measured the force deflection behavior of selected initial alignment archwires by conducting three-point bending tests under controlled tests. The study tested three wire designs, namely, co-axial multistranded stainless steel wires, nickel–titanium, and copper–nickel–titanium archwires.Materials and Methods:The archwires were ligated to a specially designed metal jig, simulating the arch. A testing machine (Instron) recorded activation and deactivation forces of different deflections at 37°C. Forces on activation and deactivation were compared by one-way analysis of variance (ANOVA).Results:Significant differences (P < 0.05) in activation and deactivation forces were observed among the tested wires. The co-axial multistranded wire had the lowest mean activation and deactivation forces, whereas conventional nickel–titanium wires had more mean activation and deactivation forces at different deflections.Conclusion:The activation and deactivation forces were higher for nickel–titanium followed by copper–nickel titanium and co-axial wires. The amount of percentage force loss was more for co-axial wire, indicating that these wires are not ideal for initial leveling and aligning.