A main goal of surgical simulators is the creation of virtual training environments for prospective surgeons. Thus, students can rehearse the various steps of surgical procedures on a computer system without any risk to the patient. One main condition for realistic training is the simulated interaction with virtual medical devices, such as endoscopic instruments. In particular, the virtual deformation and transection of tissues are important. For this application, a neuro-fuzzy model has been developed, which allows the description of the visual and haptic deformation behavior of the simulated tissue by means of expert knowledge in the form of medical terms. Pathologic conditions affecting the visual and haptic tissue response can be easily changed by a medical specialist without mathematical knowledge. By using the personal computerbased program Elastodynamic Shape Modeler, these conditions can be adjusted via a graphical user interface. With a force feedback device, which is similar to a real laparoscopic instrument, virtual deformations can be performed and the resulting haptic feedback can be felt. Thus, use of neuro-fuzzy technologies for the definition and calculation of virtual deformations seems applicable to the simulation of surgical interventions in virtual environments.