We present a novel, robust, integrated approach to segmentation shape and motion estimation of articulated objects. Initially, we assume the object consists of a single part, and we fit a deformable model to the given data using our physics-based framework. As the object attains new postures, we decide based on certain criteria if and when to replace the initial model with two new models. These criteria are based on the model's state and the given data. We then fit the models to the data using a novel algorithm for assigning forces from the data to the two models, which allows partial overlap between them and determination of joint location. This approach is applied iteratively until all the object's moving parts are identified. Furthermore, we define new global deformations and we demonstrate our technique in a series of experiments, where Kalman filtering is employed to account for noise and occlusion.
This paper develops a new class of physics-based deformable models which can deform both globally and locally. Their global parameters are functions allowing the definition of new parameterized primitives and parameterized global deformations. These new global parameter functions improve the accuracy of shape description through the use of a few intuitive parameters such as functional bending and twisting. Using a physics-based approach we convert these geometric models into deformable models that deform due to forces exerted from the datapoints so as to conform to the given dataset. We present an experiment involving the extraction of shape and motion of the Left Ventricle (LV) of a heart from MRI-SPAMM data based on a few global parameter functions. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposed or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.