The change in crystallographic orientation distribution during high temperature deformation for an Al-Mg-Mn alloy sheet consisting of the coarse-grained surface and the fine-grained center layers has been investigated in order to reveal the deformation mechanism. The grain size dependence of the deformation behavior is discussed in the identical deformation condition by using the specially-prepared sheet. The grain structures in the coarse-grained surface layer of the sample deformed at 713 K are elongated in the tensile direction corresponding to the macroscopic elongation to failure. The structures related to the maximum elongation in both of the surface and center layers have preferred orientations of the tensile deformation. Further, the intragranular misorientation, grain boundary misorientation and high strain rate deformation are analyzed in detail.