This version is available at https://strathprints.strath.ac.uk/61946/ Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.ukThe Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output. Abstract-This paper presents preliminary results for metalpackaged fiber Bragg grating strain and temperature sensors designed specifically for structural health monitoring in civil engineering applications. The laboratory experiments show that the in-house manufactured metal-packaged sensors are sufficiently resilient, under dynamic loading, to successfully undergo a million cycle fatigue test without adverse deterioration in performance. In addition, from the thermal characterization of the devices, a conclusion can be drawn that the metalpackaged sensors offer superior performance over sensors assembled using epoxy bonding. These early results are very promising, inspiring confidence in the adopted methodologies, and giving the mandate to proceed with more detailed laboratory testing to evaluate reliability and lifetime of the transducers in the future work.