Microplastics are the basic particles (1 µm–1 mm), derived from degradation of polymers with maximum molecular weight via various sources. They occur in a variety of shapes and sizes, in the form of domains, particles, and fibers. Release of Microplastics in the ecosystem, due to deterioration of macroplastics are now being considered as major toxic pollutants. Accumulation of microplastics in the diverse ecosystems is known to cause severe health and ecological effects. Since it is mandatory to take steps towards the removal of microplastics through effective and safe technology, with this objective, the present study is undertaken to reveal various green technology principles for the management of microplastics contamination associated with diverse environmental sources. This strategy involves physical methods, chemical methods, biological methods that under the conventional measures and nanotechnology principles as modern remediation. Physical methods involve filtration, membrane‐technology and adsorption. Chemical remediation involves hydrolysis, alcoholysis, acidolysis, glycolysis, aminolysis, photocatalytic degradation and electrochemical oxidation resulting in decomposition of microplastics into simpler, non‐toxic end products. Biological methods involve biosorption, microbial degradation, microbial ingestion and phytoremediation, where plants or plant biomass can be used for removal of microplastics via phytoaccumulation, phytostabilization, phytovolatilization and phytofiltration. Nano technology remediation utilizes nanoscale materials as adsorbents. Due to its unique nanosize, high surface area and energy, nanomaterials are considered effective adsorbents of microplastics. Microplastics can also be detected and identified using machine learning approaches. The present study implies that, the green technology principles can be effectively utilized for the removal of microplastics associated with diverse ecosystem.