Aliphatic chlorinated compounds, such as trichloroethylene (TCE) and tetrachloroethylene (PCE), are major contaminants of ground water. A single-pass packed-bed bioreactor was utilized to study the biodegradation of organic waste mixtures consisting of PCE, TCE, and other short-chain chlorinated organics. The bioreactor consisted of two 1960-mL glass columns joined in a series. One column was packed with sand containing a microbial consortia enriched from a contaminated site. The other column provided a reservoir for oxygen and a carbon source of methane/propane that was recirculated through the reactor. Sampling was accomplished by both direct headspace and liquid effluent concentration analyses. The reactor was operated in a single-pass mode. Greater than 99% degradation of trichloroethylene, approaching drinking water standards, was observed when the bioreactor residence time ranged from 1.9 to 3.2 d. Typically, when the reactor was pulse-fed with methane, propane, and air, 1 mol of TCE was degraded/110 mol of substrate utilized. Perturbation studies were performed to characterize reactor behavior. The system's degradation behavior was affected by providing different carbon sources, a pulse feeding regime, supplementing microbial biomass, and by altering flow rates.