The effect of water stress on growth (fresh weight, dry weight), water relations (water saturation deficit, water potential, osmotic pressure), and proline metabolism in Phaseolus vulgaris were studied.Experimentally, water deficit was produced by reduced watering of the bean plants. This resulted in a decrease in water potential and leaf fresh and dry weight. Increases in the water saturation deficit and the osmotic pressure of the sap were, however, recorded. Water stress was also induced by treatment of the plants with polyethylene glycol, but its effects on the above mentioned parameters were different. In addition, necrosis of the foliage was observed. According to the present results, polyethylene glycol seems to be suitable only for the induction of short-termed water stress conditions.The effects of water stress on growth and on water relations of the plants were accompanied by a marked increase in the free amino acid content, especially that of the free proline content of the plants. The activities of the proline dehydrogenase and glutamate dehydrogenase were stimulated under water stress conditions, indicating that proline accumulation in water stressed plants is not attributed to an inhibited proline breakdown. The accumulated proline was metabolized rapidly once the water deficit of the plant was relieved by watering. The ability of the plant to accumulate proline might be of ecological importance for the plant and might be an adaption mechanism of the plant to overcome short periods of drought.