Dehydroepiandrosterone (DHEA) and its sulfate ester, DHEAS, are the major circulating adrenal steroids and serve as substrates for sex hormone biosynthesis. DHEA is effectively taken up by adipose tissue, where the concentrations of free DHEA are four to ten times higher than those found in the circulation. DHEA reduces adipose tissue mass and inhibits the proliferation and differentiation of adipocytes; it may also protect against obesity by lowering the activity of stearoyl-CoA desaturase 1 in fat cells. Recent studies demonstrate that DHEA stimulates triacylglycerol hydrolysis in adipose tissue by increasing the expression and activity of adipose triglyceride lipase and hormone-sensitive lipase, the key enzymes of lipolysis. DHEA has been shown to modulate insulin signaling pathways, enhance glucose uptake in adipocytes, and increase insulin sensitivity in patients with DHEA deficiency or abnormal glucose tolerance. Additionally, by suppressing the activity of 11β-hydroxysteroid dehydrogenase 1 in adipocytes, DHEA may promote intra-adipose inactivation of cortisol to cortisone. Several studies have demonstrated that DHEA may also regulate the expression and secretion of adipokines such as leptin, adiponectin, and resistin. The effects of DHEA on adipokine expression in adipose tissue are depot-specific, with visceral fat being the most responsive. The mechanisms underlying DHEA actions in adipose tissue are still unclear; however, they involve nuclear receptors such as androgen receptor and peroxisome proliferator-activated receptors γ and α. Because clinical trials investigating the effects of DHEA failed to yield consistent results, further studies are needed to clarify the role of DHEA in the regulation of human adipose tissue physiology.