In this work, the cation and anion products of the reactions between platinum clusters produced by laser ablation and the benzene molecules seeded in argon have been studied using a high-resolution reflectron time-of-flight mass spectrometer (RTOFMS). The dominant cation products are [C(6n)H(6n - k)](+) and [Pt(m)(C(6)H(6))(n)](+) complexes, while the dominant anion products are dehydrogenated species, [C(6)H(5)PtH](-), [PtC(12)H(k)](-) and [Pt(m)C(6)H(4) . . . (C(6)H(6))(n)](-), etc. Some important intermediate structures ([PtC(6)H(6)](+), [Pt(C(6)H(6))(2)](+), [Pt(2)(C(6)H(6))(3)](+), [C(6)H(5)PtH](-), [Pt(2)C(6)H(4)](-), [Pt(3)C(6)H(4)](-) and [Pt(4)C(6)H(4)](-)) have been analyzed using density functional theory (DFT) calculations. Different reaction mechanisms are proposed for platinum cluster cations and anions with benzene, respectively.