In intermittently connected delay tolerant wireless sensor networks, sensor data generated at sensor nodes should be delivered to a sink node using opportunistic contacts between intermittently connected nodes. Since there is no stable end-to-end routing path from a source node to a sink node in intermittently connected network, an opportunistic routing protocol to deliver sensor data efficiently is needed. In this paper, an improved opportunistic routing protocol is proposed, where both current delivery predictability and maximum delivery predictability are used together to decide whether sensor data should be forwarded or not to a contact node. The proposed protocol can reduce buffer overflow and thus increase the delivery ratio, which is one of the most important performance measures in delay tolerant wireless sensor networks. The performance of the proposed routing protocol is compared with that of PRoPHET protocol and FREAK protocol, by varying buffer sizes and the number of nodes, in terms of delivery ratio, overhead ratio, and delivery latency. Performance analysis results show that the proposed protocol has better delivery ratio, overhead ratio, and delivery latency than the PRoPHET protocol and FREAK protocol have, in most considered parameter values, with appropriate selection of message dissemination thresholds.