In this study, the influence of various turbulence-grid configurations is analysed on both the induced free-stream turbulence (FST) and the resulting Klebanoff modes/streaks developing in a laminar flat-plate boundary layer downstream in a laminar water channel. All results are based on hot-film and particle image velocimetry measurements as well as visualizations. The grid design and installation has been done according to common grid installation recommendations to ensure homogeneous FST causing meandering Klebanoff modes inside the boundary layer. But it was found that (i) the Klebanoff modes do not meander for all grid configurations, (ii) not all configurations cause Klebanoff modes with the expected temporal and spatial behaviour, and (iii) for some configurations, the spanwise streak spacing is strictly locked to the grid spacing (mesh width). As these observations are unreported in the literature, this study is aimed at a thorough description of the influence of key grid parameters on the FST and the resulting streaks within the boundary layer. The investigation includes the grid parameters typically reported, such as the grid-bar diameters, the associated Reynolds numbers, or the streamwise placement of the grid, but now also the grid-orientation order (horizontal/vertical or vertical/horizontal order of grid bars of the dual-plane grid), the wall-normal position of the horizontal bars relative to the leading edge of the flat plate, and the existence of palpable imperfections in the manufactured grids. The Reynolds-number range covered lies well in the lower band of wind-tunnel experiments. Thus, this study suggests that the reliability and reproducibility of future experimental studies on FST would be greatly improved if they demonstrated homogeneity in the free-stream in both spanwise and wall-normal directions, documented the ongoing meandering and wavelengths of the generated Klebanoff modes and thus (implicitly) documented the spanwise independence of the results in the temporal mean. The latter is a prerequisite for the reliable investigation of FST/isolated-roughness interactions.
Graphical abstract