Delaying laminar–turbulent transition in boundary layers is of great interest since the skin-friction coefficient can be reduced by up to one order of magnitude. In this experimental research, it is shown that counter-rotating cylindrical roughness elements are able to delay transition under realistic flow conditions. Evidence is given by the intermittency, evaluated from hot-film measurements in a laminar water channel. An increase in rotation speed results in a delay of transition of up to $${6.5}{\%}$$
6.5
%
in the center of the plate. This trend can be explained by the streaks amplified by the rotating cylinders, resulting in a damping of the fluctuation amplitude in the boundary layer. The advantage of this method is that the transition delay can be actively controlled with conventional cylindrical roughness elements.
Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.