Exploring the accurate structure ensembles are critical to understand the functions of intrinsically disordered proteins (IDPs). As a well‐known IDP, islet amyloid polypeptide (IAPP) plays important roles in the development of human type II diabetes (T2D). The toxicity of human IAPP (hIAPP) is induced by the amyloidosis of the peptide, however, its aggregation mechanism remains ambiguous. The characterization of structure ensemble of hIAPP, as well as the differences between hIAPP and its non‐amyloidogenic homologous such as rat IAPP (rIAPP), would greatly help to illuminate the amyloidosis mechanism of IAPP. In this study, the atomic structure ensembles of hIAPP and rIAPP were characterized by all‐atom molecular dynamics (MD) simulations combined with enhanced sampling technology and experiment data restraints. The obtained structure ensembles were firstly compared with those determined by the conventional MD (cMD) and enhanced sampling without experiment data restraints. The results showed that the enhanced sampling and experiment data restraints would improve the simulation accuracy. The transient N‐terminal α‐helix structures were adopted by the sub‐states of both hIAPP and rIAPP, however, the C‐terminal helical structures were only present on hIAPP. The hydrophobic residues in the amyloid‐core region of hIAPP are exposed to the solvent. The structure ensemble differences between hIAPP and rIAPP revealed in this work provide potential explain to the amyloidogenic mechanism and would be helpful for the design of drugs to combat T2D.