2020
DOI: 10.1016/j.patrec.2019.11.007
|View full text |Cite
|
Sign up to set email alerts
|

DELP-DAR system for license plate detection and recognition

Abstract: Automatic License Plate detection and Recognition (ALPR) is a quite popular and active research topic in the field of computer vision, image processing and intelligent transport systems. ALPR is used to make detection and recognition processes more robust and efficient in highly complicated environments and backgrounds. Several research investigations are still necessary due to some constraints such as: completeness of numbering systems of countries, different colors, various languages, multiple sizes and vari… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
30
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 75 publications
(36 citation statements)
references
References 44 publications
0
30
0
1
Order By: Relevance
“…With the deepening of the network structure, these features become more and more abstract. With the complexity and difference of license plate images collected under different lighting conditions being taken into consideration, Lenet5 convolutional neural network is designed to classify the enhanced images in the paper [13]. The network schematic diagram is shown in Figure 2, and it is composed of two convolution pooling layers and three fully connected layers, where the loss function is defined as the cross-entropy loss function.…”
Section: Design Of Image Classifiermentioning
confidence: 99%
See 1 more Smart Citation
“…With the deepening of the network structure, these features become more and more abstract. With the complexity and difference of license plate images collected under different lighting conditions being taken into consideration, Lenet5 convolutional neural network is designed to classify the enhanced images in the paper [13]. The network schematic diagram is shown in Figure 2, and it is composed of two convolution pooling layers and three fully connected layers, where the loss function is defined as the cross-entropy loss function.…”
Section: Design Of Image Classifiermentioning
confidence: 99%
“…The final SSIM index is shown in the Equation (13). When it is set so that C 3 = C 2 /2, the equation can be reduced to Equation (14).…”
Section: Structural Similarity Measurement Algorithmmentioning
confidence: 99%
“…На першому етапі вхідне зображення довільним чином розбивається на множину регіонів зацікавлення, які поступають на входи згорткових мереж (CNN, Convolution Neural Networks), які вирішують завдання місцезнаходження автономера на вхідному зображенні та формує на виході багатовимірний вектор ознак (4096 у нашому випадку). Отримані вектори ознак поступають на вхід класифікатора SVM (support vector machine,), лінійних класифікаторів на базі методу опорних векторів [14][15][16]. На виході Mask R-CNN нейромережі отримуємо місцеположення пластини автономера на фотозображенні автомобіля (рис.…”
Section: рис 2 пояснення принципу локалізації номера та його сегменunclassified
“…Many factors affect ALPR recognition accuracies such as light ambient, image resolution, camera angles, etc. Previously in ALPR researches has been done, there were 2 methods Generally used such as morphological approach [2][3][4][5] and Deep Learning approach [6][7][8][9]. The deep learning approach is often used recently because has better accuracy than the edge detection approach, Despite the fact deep learning approach has poor performance speed.…”
Section: Introductionmentioning
confidence: 99%
“…The research [8] performed plate number detection, segmentation, and character recognition using Mask Region Convolutional Neural Network (Mask R-CNN). This study used GoogLeNet [12] without inception module as feature extraction, and swish activation function.…”
Section: Introductionmentioning
confidence: 99%