This work introduces a Machine Learning (ML) model designed to predict solar radiation in diverse cities representing Colombia's climatic variability. It is crucial to assert that the amount of solar energy received in a specific region is directly related to solar radiation and its availability, which is influenced by each area's particular climatic and geographic conditions. Due to the high variability and resulting uncertainty, various approaches have been explored, including the use of numerical models to estimate solar radiation. The primary objective of this study was to develop and validate an ML model that accurately predicts solar radiation in cities. The methodology employed was specific to data treatment and ML model development. It was structured into three fundamental stages: clustering, estimation, and response, considering that the model is based on historical data. The obtained results were assessed using appropriate statistical definitions, not only determining the model's efficiency in terms of prediction but also considering interactions between data for the approximation and prediction of solar radiation. In this context, it is crucial to emphasize that the research contributes to understanding solar radiation in Colombia. This study underscores the importance of developing ML models to predict solar radiation, emphasizing the need to consider the country's climatic diversity. The results obtained, following the model's application, provide valuable information for comprehending and anticipating the availability of this primary resource.