Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The convenience of availing quality services at affordable costs anytime and anywhere makes mobile technology very popular among users. Due to this popularity, there has been a huge rise in mobile data volume, applications, types of services, and number of customers. Furthermore, due to the COVID‐19 pandemic, the worldwide lockdown has added fuel to this increase as most of our professional and commercial activities are being done online from home. This massive increase in demand for multi‐class services has posed numerous challenges to wireless network frameworks. The services offered through wireless networks are required to support this huge volume of data and multiple types of traffic, such as real‐time live streaming of videos, audios, text, images etc., at a very high bit rate with a negligible delay in transmission and permissible vehicular speed of the customers. Next‐generation wireless networks (NGWNs, i.e. 5G networks and beyond) are being developed to accommodate the service qualities mentioned above and many more. However, achieving all the desired service qualities to be incorporated into the design of the 5G network infrastructure imposes large challenges for designers and engineers. It requires the analysis of a huge volume of network data (structured and unstructured) received or collected from heterogeneous devices, applications, services, and customers and the effective and dynamic management of network parameters based on this analysis in real time. In the ever‐increasing network heterogeneity and complexity, machine learning (ML) techniques may become an efficient tool for effectively managing these issues. In recent days, the progress of artificial intelligence and ML techniques has grown interest in their application in the networking domain. This study discusses current wireless network research, brief discussions on ML methods that can be effectively applied to the wireless networking domain, some tools available to support and customise efficient mobile system design, and some unresolved issues for future research directions.
The convenience of availing quality services at affordable costs anytime and anywhere makes mobile technology very popular among users. Due to this popularity, there has been a huge rise in mobile data volume, applications, types of services, and number of customers. Furthermore, due to the COVID‐19 pandemic, the worldwide lockdown has added fuel to this increase as most of our professional and commercial activities are being done online from home. This massive increase in demand for multi‐class services has posed numerous challenges to wireless network frameworks. The services offered through wireless networks are required to support this huge volume of data and multiple types of traffic, such as real‐time live streaming of videos, audios, text, images etc., at a very high bit rate with a negligible delay in transmission and permissible vehicular speed of the customers. Next‐generation wireless networks (NGWNs, i.e. 5G networks and beyond) are being developed to accommodate the service qualities mentioned above and many more. However, achieving all the desired service qualities to be incorporated into the design of the 5G network infrastructure imposes large challenges for designers and engineers. It requires the analysis of a huge volume of network data (structured and unstructured) received or collected from heterogeneous devices, applications, services, and customers and the effective and dynamic management of network parameters based on this analysis in real time. In the ever‐increasing network heterogeneity and complexity, machine learning (ML) techniques may become an efficient tool for effectively managing these issues. In recent days, the progress of artificial intelligence and ML techniques has grown interest in their application in the networking domain. This study discusses current wireless network research, brief discussions on ML methods that can be effectively applied to the wireless networking domain, some tools available to support and customise efficient mobile system design, and some unresolved issues for future research directions.
The rapid uptake of mobile devices and the rising popularity of mobile applications and services pose unprecedented demands on mobile and wireless networking infrastructure. Upcoming 5G systems are evolving to support exploding mobile traffic volumes, real-time extraction of fine-grained analytics, and agile management of network resources, so as to maximize user experience. Fulfilling these tasks is challenging, as mobile environments are increasingly complex, heterogeneous, and evolving. One potential solution is to resort to advanced machine learning techniques, in order to help manage the rise in data volumes and algorithm-driven applications. The recent success of deep learning underpins new and powerful tools that tackle problems in this space.In this paper we bridge the gap between deep learning and mobile and wireless networking research, by presenting a comprehensive survey of the crossovers between the two areas. We first briefly introduce essential background and state-of-theart in deep learning techniques with potential applications to networking. We then discuss several techniques and platforms that facilitate the efficient deployment of deep learning onto mobile systems. Subsequently, we provide an encyclopedic review of mobile and wireless networking research based on deep learning, which we categorize by different domains. Drawing from our experience, we discuss how to tailor deep learning to mobile environments. We complete this survey by pinpointing current challenges and open future directions for research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.