Background
Traditional medical education often lacks contextual experience, hindering students’ ability to effectively apply theoretical knowledge in real-world scenarios. The integration of the metaverse into medical education holds great enormous promise for addressing educational disparities, particularly in lower-middle-income countries (LMICs) accompanied by rapid technological advancements. This commentary paper aimed to address the potential of the metaverse in enhancing basic sciences education within the constraints faced by universities in LMICs. We also addressed learning design challenges by proposing fundamental design elements and a suggested conceptual framework for developing metaverse-based teaching methods.The goal is to assist educators and medical practitioners in comprehensivley understanding key factors in immersive teaching and learning.
Discussion
By immersing medical students in virtual scenarios mimicking real medical settings and patient interactions, the metaverse enables practice in clinical decision-making, interpersonal skills, and exposure to complex medical situations in a controlled environment. These simulations can be customized to reflect local healthcare challenges, preparing medical students to tackle specific community needs. Various disciplines, including anatomy, physiology, pharmacy, dentistry, and pathology, have begun leveraging the metaverse to offer immersive learning experiences, foster interdisciplinary collaborations, and facilitate authentic assessments. However, financial constraints pose a significant barrier to widespread adoption, particularly in resource-limited settings like LMICs. Addressing these challenges is crucial to realizing the full potential of metaverse technology in medical education.
Conclusion
The metaverse offers a promising solution for enhancing medical education by providing immersive, context-rich learning experiences. This paper proposes a conceptual framework and fundamental design elements to aid faculty educators and medical practitioners in effectively incorporating metaverse technology into their teaching methods, thus improving educational outcomes in LMICs.