Well-defined, modular dendrimers enable processing techniques and electronic properties to be tuned independently. Moreover, the dendritic topology can isolate the core chromophore, thus reducing or eliminating strong intermolecular interactions. This paper presents the synthesis of three series of flexible, dendron-functionalized dendrimers as red-lightemitting materials by a convergent approach: (1) carbazole (CZ) or oxadiazole (OXZ) terminated imide-type dendrimers, (2) cascade energy-transferring imide-type dendrimers, and (3) CZ-terminated perylene bay-type dendrimers. They all consist of the luminescent core of perylenebis(dicarboximide)s with specific functional groups of CZ or OXZ at the periphery and are constructed from flexible Fréchet-type poly(aryl ether) dendrons. The chemical structures of the dendrons and dendrimers were determined by standard spectroscopic