Seasonally-flooded wetlands occur throughout the world and provide important foraging, resting, and breeding habitat for a broad array of organisms. This review summarizes our current understanding of vertebrate community composition at seasonal forest pools in the northeastern United States. These wetlands typically have hydroperiods that range from temporarily flooded to intermittently exposed, which reduces densities of many potential predators (e.g., fish). Current research has shown that pool hydroperiod, canopy closure, vegetation structure within pools, presence of potential predators, and landscape structure surrounding pools are the key factors determining vertebrate diversity at seasonal forest pools. Of 25 species of amphibians in the region, frogs (10 of 12 species) are more likely to breed in seasonal forest pools than salamanders (6 of 13 species). Seven of 10 amphibian species that breed in seasonal forest pools are state-listed as threatened or endangered. Among 27 species of reptiles, 3 of 15 species of snakes, and 6 of 12 species of turtles utilize seasonal pools during at least one stage of their annual cycle. Seasonal forest pools are important foraging and basking habitat for three species of turtles listed as threatened or endangered. Compared to other vertebrate taxa, most species of mammals are habitat generalists, with 50 of 63 mammal species potentially foraging at seasonal pools during part of their annual cycle. Chiroptera (bats; all 9 species) are believed to actively forage at seasonal pools and some Insectivora, particularly Sorex palustris Richardson and S. fumeus (Miller) and Condylura cristata (L.), are detected regularly at seasonal pools. Breeding birds are less likely to utilize seasonal pools than other vertebrate taxa, although 92 of 233 species might forage or breed near seasonal pools. Several species of Anatidae, Rallidae, and some Passeriformes use seasonally flooded pools. All vertebrates that use seasonal forest pools use other habitats during some stage in their life cycle; thus gaining a clear understanding of their habitat requirements is critical to their long-term persistence.