In this paper we propose and study a family of continuous wavelets on general domains, and a corresponding stochastic discretization that we call Monte Carlo wavelets. First, using tools from the theory of reproducing kernel Hilbert spaces and associated integral operators, we define a family of continuous wavelets by spectral calculus. Then, we propose a stochastic discretization based on Monte Carlo estimates of integral operators. Using concentration of measure results, we establish the convergence of such a discretization and derive convergence rates under natural regularity assumptions.