2006
DOI: 10.1109/tmag.2006.879617
|View full text |Cite
|
Sign up to set email alerts
|

Dependence of Frequency and Magnetic Field on Self-Heating Characteristics of NiFe$_2$O$_4$Nanoparticles for Hyperthermia

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
16
0
2

Year Published

2008
2008
2020
2020

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 45 publications
(19 citation statements)
references
References 6 publications
1
16
0
2
Order By: Relevance
“…1,2 SAR can be estimated by calorimetric methods as SAR = ͑1 / m͒C͑⌬T / ⌬t͒, where m is the mass of the dissipating material, C the heat capacity of the whole sample, and ⌬T the sample temperature increase during the ac-field application interval ⌬t. Current SAR installations reported in literature 8,10,[14][15][16] consist of an ac magnetic field generator, a sample space delimited by an isolating material, temperature sensors, and a data acquisition system. These setups do not provide adiabatic conditions, since heat losses ͑conduction, radiation, and convection͒ are not minimized.…”
mentioning
confidence: 99%
“…1,2 SAR can be estimated by calorimetric methods as SAR = ͑1 / m͒C͑⌬T / ⌬t͒, where m is the mass of the dissipating material, C the heat capacity of the whole sample, and ⌬T the sample temperature increase during the ac-field application interval ⌬t. Current SAR installations reported in literature 8,10,[14][15][16] consist of an ac magnetic field generator, a sample space delimited by an isolating material, temperature sensors, and a data acquisition system. These setups do not provide adiabatic conditions, since heat losses ͑conduction, radiation, and convection͒ are not minimized.…”
mentioning
confidence: 99%
“…So, we can consider that the majority of the nanoparticles in the sample become superparamagnetic at around 135 K. The specific absorption rate (SAR) of the sample in an alternating magnetic field was measured calorimetrically in an AC magnetic field at a frequency of 100 kHz and a magnetic field of 29.4 kA/m. Here, the value of the product between the frequency and the intensity of the AMF is 29.4 × 10 8 Am −1 s −1 , which is below the biological range for applications of magnetic hyperthermia in a small body region [23]; however, it is above the value imposed for the whole body exposure [24]. We used higher field parameters for our study, and, therefore, they are appropriate for smaller body regions.…”
Section: Resultsmentioning
confidence: 97%
“…Вследствие теплового эффекта под влиянием магнитного поля происходит деградация частиц, что приводит к снижению скорости нагрева (рис. 4, а−с), согласующемуся с данными [19].…”
Section: методикA исследованийunclassified
“…Физическая природа быстрого повышения температу-ры на начальной стадии может быть объяснена процес-сами потерь: потерями за счет гистерезиса, вихревых токов, а также неелевскими и броуновскими потеря-ми [19]. Поскольку ферриты обладают очень низкой проводимостью, вклад от потерь на вихревые токи незна-чителeн.…”
Section: результаты и обсуждениеunclassified