Diamond-like carbon (DLC) coatings deposited onto high-speed-steel surfaces were subjected to deep cryogenic treatment (DCT) at temperatures of −120 to −196 °C to investigate the evolution of microstructure, bonding structure, and mechanical properties. The surface morphology and the bonding structure of the DLC coatings were studied using scanning electron microscopy, transmission electron microscopy, micro-Raman spectroscopy, and X-ray photoelectron spectroscopy. It is found that DCT affects the surface morphology, especially the size and the height of the aggregates. For those DLCs with more than 50% sp3 C fraction, the sp2 C → sp3 C transformation occurred in coatings treated at a temperature of −120 to −160 °C; and the maximum fraction of sp3 C was obtained after treatment at −140 °C. Almost keeping the wear resistance of DLCs, DCT can improve the adhesion strength, and surface hardness. The findings of this study indicate that DCT will be a potential post-treatment method to tune the microstructure and mechanical performance of DLC coatings.