The mechanism of ion-stimulated erosion of atmosphereless solar system bodies is suggested and investigated. A theoretical model for the brittle surface erosion resulting under the effect of multicharge ion cosmic rays is analyzed. It is shown that the thermoelastic waves originated in the energetic track of a very heavy ion can result in the near-surface stresses exceeding the dynamic tensile strength of the surface material for any atmosphereless solar system body. The thermoelastic wave surface arrival yields brittle erosion of the material and ejection of this latter fragments (the track-breaking process), Thus ejected dust grains have plano-oblong shape, average mass on the order of 10-l' g and velocity up to 400 m/set providing the surface erosion rate of 10-l f 3 lo* &year (near the Earth orbit) which depends upon the surface material (rock or ice). Possible track-breaking consequences, in particular, presence of the dust fraction of ultramicron grains and their aggregates on the lunar surface are discussed. Near the bodies with the radii from 10 to 300 km predicted is the existence of extended dust cocoons consisting of ultramicron and submicron grains. Smaller objects (asteroids, comets, smallest satellites of planets, meteoroids, etc.) can serve sources of permanent dust wind of ultramicron and submicron sized grains escaping from their surfaces. The interplanetary dust yield owing to the ion-stimulated erosion of these bodies is not less than lOi g/year. Possible interpreting in the frames of track-breaking process existence of dust grains with the mass of IO-'* + some observational data and effects, including 10-r' g near the Halley's comet and the nature of 2060 Chiron dust coma is discussed. To prove the theory, observational identification and investigation of dust phenomena complex related to the ion-stimulated erosion of atmosphereless bodies, suggested is employing extreme ultraviolet and far infrared/submillimeter wavelengths, as well as polarimetric methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.