We recorded in 16 healthy subjects the sagittal and frontal components of the stabilogram when standing on a rigid motionless or movable (oscillating) platform under four conditions of visual control: (i) open eyes, OE; (ii) closed eyes, CE; (iii) central vision, CV, and (iv) virtual visual environment, VVE. Under the latter condition, subjects observed the 3D image of a room, which was generated by the computer; the image was adhered to head movements in such a manner that a peculiar connection for normal visual conditions between movements of the head and displacements of the visible visual environment was reproduced. Through a lowpass filtration of a trajectory of the center of pressure of feet (CPF), two elementary variables were received, horizontal motions of the center of gravity (CG) and the difference between the CPF and the CG (CPF-CG). Changes in these variables (CG and CPF-CG) were estimated using spectral analysis and subsequent calculation of the median frequency (MF) and root mean square value (RMS) of the spectra. The MFs of the spectra of the investigated variables were approximately identical under conditions of standing on oscillating and motionless supports and showed no clear dependence on various visual conditions. Unlike MFs, the RMSs of the spectra of body sways appeared more dependent on changes of conditions of standing and the mode of visual control (differing from each other in the higher sensitivity to modifications of conditions of standing and visual control). With standing on the motionless support, the RMSs of the spectra of both variables were the greatest under VVE and CE conditions and the smallest under OE condition. The body oscillations were considerably amplified under conditions of standing on a movable support, and a different pattern of visual influences on the RMS of both investigated variables was revealed. The RMSs had the greatest value under CE condition and were much smaller (50-40%) under other visual conditions, including the VVE condition. Therefore, our findings show that, under VVE conditions, visual sensory afferentation is ignored by cerebral structures controlling postural adjustments if standing occurs on a motionless support but is effectively used at the maintenance of upright stance on an oscillating support.