Two dimensional (2D) materials have attracted wide attention due to their ultrathin atomic structure, large specific surface area and quantum confinement effect which are remarkably different from their bulk counterparts. Anisotropic materials are unique among reported 2D materials. Their orientation-dependent physical and chemical properties make it possible to selectively improve the performance of materials. As representative examples, Re-based transition metal dichalcogenides (Re-TMDs) have tunable bandgaps in visible spectrum, extremely weak interlayer coupling, and anisotropic properties in optics and electronics, which make them attractive in the application areas of electronics and optoelectronics. In this riviev, the unique crystal structures and intrinsic properties of the Re-based TMDs semiconductors are introduced firstly, and then the synthetic method is introduced, followed by discussion on the unique physical characterizations and optimized means. Finally, prospects and suggestions are put forward for the preparation and research of ReX 2 .