Background
Anxiety and depression are the most common mental disorders worldwide. Owing to the lack of psychiatrists around the world, the incorporation of artificial intelligence (AI) into wearable devices (wearable AI) has been exploited to provide mental health services.
Objective
This review aimed to explore the features of wearable AI used for anxiety and depression to identify application areas and open research issues.
Methods
We searched 8 electronic databases (MEDLINE, PsycINFO, Embase, CINAHL, IEEE Xplore, ACM Digital Library, Scopus, and Google Scholar) and included studies that met the inclusion criteria. Then, we checked the studies that cited the included studies and screened studies that were cited by the included studies. The study selection and data extraction were carried out by 2 reviewers independently. The extracted data were aggregated and summarized using narrative synthesis.
Results
Of the 1203 studies identified, 69 (5.74%) were included in this review. Approximately, two-thirds of the studies used wearable AI for depression, whereas the remaining studies used it for anxiety. The most frequent application of wearable AI was in diagnosing anxiety and depression; however, none of the studies used it for treatment purposes. Most studies targeted individuals aged between 18 and 65 years. The most common wearable device used in the studies was Actiwatch AW4 (Cambridge Neurotechnology Ltd). Wrist-worn devices were the most common type of wearable device in the studies. The most commonly used category of data for model development was physical activity data, followed by sleep data and heart rate data. The most frequently used data set from open sources was Depresjon. The most commonly used algorithm was random forest, followed by support vector machine.
Conclusions
Wearable AI can offer great promise in providing mental health services related to anxiety and depression. Wearable AI can be used by individuals for the prescreening assessment of anxiety and depression. Further reviews are needed to statistically synthesize the studies’ results related to the performance and effectiveness of wearable AI. Given its potential, technology companies should invest more in wearable AI for the treatment of anxiety and depression.
Background
Anxiety and depression are the most common mental disorders worldwide. Owing to the lack of psychiatrists around the world, the incorporation of artificial intelligence (AI) into wearable devices (wearable AI) has been exploited to provide mental health services.
Objective
This review aimed to explore the features of wearable AI used for anxiety and depression to identify application areas and open research issues.
Methods
We searched 8 electronic databases (MEDLINE, PsycINFO, Embase, CINAHL, IEEE Xplore, ACM Digital Library, Scopus, and Google Scholar) and included studies that met the inclusion criteria. Then, we checked the studies that cited the included studies and screened studies that were cited by the included studies. The study selection and data extraction were carried out by 2 reviewers independently. The extracted data were aggregated and summarized using narrative synthesis.
Results
Of the 1203 studies identified, 69 (5.74%) were included in this review. Approximately, two-thirds of the studies used wearable AI for depression, whereas the remaining studies used it for anxiety. The most frequent application of wearable AI was in diagnosing anxiety and depression; however, none of the studies used it for treatment purposes. Most studies targeted individuals aged between 18 and 65 years. The most common wearable device used in the studies was Actiwatch AW4 (Cambridge Neurotechnology Ltd). Wrist-worn devices were the most common type of wearable device in the studies. The most commonly used category of data for model development was physical activity data, followed by sleep data and heart rate data. The most frequently used data set from open sources was Depresjon. The most commonly used algorithm was random forest, followed by support vector machine.
Conclusions
Wearable AI can offer great promise in providing mental health services related to anxiety and depression. Wearable AI can be used by individuals for the prescreening assessment of anxiety and depression. Further reviews are needed to statistically synthesize the studies’ results related to the performance and effectiveness of wearable AI. Given its potential, technology companies should invest more in wearable AI for the treatment of anxiety and depression.
“…As a result, the IoMT concept is suitable for building embedded technologies that can accurately diagnose diseases in the same manner that professionals perform. IoMT innovation, according to [ 26 ], has contributed to the establishment of vital healthcare systems. Physicians may now receive it in various settings, allowing them to better diagnose patients without affecting subjective features.…”
The Internet of Medical Things (IoMT) has dramatically benefited medical professionals that patients and physicians can access from all regions. Although the automatic detection and prediction of diseases such as melanoma and leukemia is still being investigated and studied in IoMT, existing approaches are not able to achieve a high degree of efficiency. Thus, with a new approach that provides better results, patients would access the adequate treatments earlier and the death rate would be reduced. Therefore, this paper introduces an IoMT proposal for medical images’ classification that may be used anywhere, i.e., it is an ubiquitous approach. It was designed in two stages: first, we employ a transfer learning (TL)-based method for feature extraction, which is carried out using MobileNetV3; second, we use the chaos game optimization (CGO) for feature selection, with the aim of excluding unnecessary features and improving the performance, which is key in IoMT. Our methodology was evaluated using ISIC-2016, PH2, and Blood-Cell datasets. The experimental results indicated that the proposed approach obtained an accuracy of 88.39% on ISIC-2016, 97.52% on PH2, and 88.79% on Blood-cell datsets. Moreover, our approach had successful performances for the metrics employed compared to other existing methods.
“…Furthermore, ref. [ 25 ] studied the detection of depression using AI. In addition, studies [ 8 , 9 , 26 , 27 ] studied depression and anxiety.…”
Section: Literature Review: Anxiety and Depression In Snmentioning
confidence: 99%
“…[ 6 ] detected signs of depression in tweets in Spanish. In [ 25 ], the study investigated “Wearable Internet of Medical Things (IoMT) devices with sensors that collect motion data and provide objective measures of physical activity can help to better monitor and detect potential episodes related to the mental health conditions at earlier, more treatable stages”, while ref. [ 28 ] did the same using pictures from Instagram.…”
Section: Literature Review: Anxiety and Depression In Snmentioning
Previous research has found support for depression and anxiety associated with social networks. However, little research has explored parents’ depression and anxiety constructs as mediators that may account for children’s depression and anxiety. The purpose of this paper is to test the influence of different factors on children’s depression and anxiety, extending from parents’ anxiety and depression in Jordan. The authors recruited 857 parents to complete relevant web survey measures with constructs and items and a model based on different research models TAM and extended with trust, analyzed using SEM, CFA with SPSS and AMOS, and ML methods, using the triangulation method to validate the results and help predict future applications. The authors found support for the structural model whereby behavioral intention to use social media influences the parent’s anxiety and depression which correlate to their offspring’s anxiety and depression. Behavioral intention to use social media can be enticed by enjoyment, trust, ease of use, usefulness, and social influences. This study is unique in exploring rumination in the context of the relationship between parent–child anxiety and depression due to the use of social networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.