To understand the physical ocean laws of ocean circulation in the deep ocean below 2000 m, a profiling float named FUXING is presented to meet the deep-ocean observation requirements at a depth of 4000 m. First, to meet the low energy consumption and buoyancy regulation stability of the profiling float, the low–power buoyancy adjustment process of FUXING is effectively solved by introducing the external seawater pressure as the driving force. Then, to reduce the energy consumption of the single profile for the profiling float, the optimization of the oil draining adjustment mode in the floating process is studied. Simultaneously, a buoyancy-driven system characterization test was performed to examine the buoyancy adjustment of FUXING. When the frequency of oil draining is 15 times, the total energy consumption of FUXING is the lowest. Finally, FUXING was deployed in the northeast off the Luzon Island to validate the feasibility and reliability. The at-sea experiments indicated that the optimized oil draining adjustment mode can reduce the total energy consumption in the floating process by more than 20%. The profile data showed that the outer sea water gradually mixes with the South China Sea water after passing through the northeast off the Luzon Island.