With the increasing damage of lives and properties caused by impact accidents, thin-walled tubes have been widely employed to make energy-absorbing structures in the field of automotive engineering due to their lightweight and energy absorption ability. In this work, we proposed three kinds of thin-walled bio-mimetic tubes inspired by horsetail plants and investigated the energy absorption abilities of the above structures with hollow columns under impact loading by means of the finite-element method. The effect of three factors, including column diameter, wall thickness, and impact angle, on the energy absorption characteristics of the bio-mimetic structure, is discussed. The primary outcome of this research is a design method for the use of thin-walled multi-cell tubes for an energy absorption device where impact loading is expected. It was also found that the energy absorption performances of the hexagonal structures are better than that of the triangular and quadrilateral ones. Moreover, the results revealed that the absorbed energy by thin-walled bio-mimetic structures shows more dependence on the impact angle than on the wall thickness of the tube.