PurposeThe purpose of this paper is to derive knockdown factor functions in terms of a shell thickness ratio (i.e. the ratio of radius to thickness) for conventional orthogrid and hybrid-grid stiffened cylinders for the lightweight design of space launch vehicles.
Design/methodology/approachThe shell knockdown factors of grid-stiffened cylinders under axial compressive loads are derived numerically considering various shell thickness ratios. Two grid systems using stiffeners – conventional orthogrid and hybrid-grid systems – are used for the grid-stiffened cylinders. The hybrid-grid stiffened cylinder uses major and minor stiffeners having two different cross-sectional areas. For modeling grid-stiffened cylinders with various thickness ratios, the effective thickness (teff) of the cylinders is kept constant, and the radius of the cylinder is varied. Thickness ratios of 100, 192 and 300 are considered for the orthogrid stiffened cylinder, and 100, 160, 200 and 300 for the hybrid-grid stiffened cylinder. Postbuckling analyses of grid-stiffened cylinders are conducted using a commercial nonlinear finite element analysis code, ABAQUS, to derive the shell knockdown factor. The single perturbation load approach is applied to represent the geometrical initial imperfection of a cylinder. Knockdown factors are derived for both the conventional orthogrid and hybrid-grid stiffened cylinders for different shell thickness ratios. Knockdown factor functions in terms of shell thickness ratio are obtained by curve fitting with the derived shell knockdown factors for the two grid-stiffened cylinders.
FindingsFor the two grid-stiffened cylinders, the derived shell knockdown factors are all higher than the previous NASA’s shell knockdown factors for various shell thickness ratios, ranging from 100 to 400. Therefore, the shell knockdown factors derived in this study may facilitate in the development of lightweight structures of space launch vehicles from the aspect of buckling design. For different shell thickness ratios of up to 500, the knockdown factor of the hybrid-grid stiffened cylinder is higher than that of the conventional orthogrid stiffened cylinder. Therefore, it is concluded that the hybrid-grid stiffened cylinder is more efficient than the conventional orthogrid-stiffened cylinder from the perspective of buckling design.
Practical implicationsThe obtained knockdown factor functions may provide the design criteria for lightweight cylindrical structures of space launch vehicles.
Originality/valueDerivation of shell knockdown factors of hybrid-grid stiffened cylinders considering various shell thickness ratios is attempted for the first time in this study.
In this research, modal tests and analyses are performed for a simplified and scaled first-stage model of a space launch vehicle using liquid propellant. This study aims to establish finite element modeling techniques for computational modal analyses by considering the liquid propellant and flange joints of launch vehicles. The modal tests measure the natural frequencies and mode shapes in the first and second lateral bending modes. As the liquid filling ratio increases, the measured frequencies decrease. In addition, as the number of flange joints increases, the measured natural frequencies increase. Computational modal analyses using the finite element method are conducted. The liquid is modeled by the virtual mass method, and the flange joints are modeled using one-dimensional spring elements along with the node-to-node connection. Comparison of the modal test results and predicted natural frequencies shows good or moderate agreement. The correlation between the modal tests and analyses establishes finite element modeling techniques for modeling the liquid propellant and flange joints of space launch vehicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.