Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This is the first attempt for the direct detection of polycyclic aromatic hydrocarbon (PAH)-DNA adducts in human placental DNA samples by solidmatrix phosphorescence (SMP). Six samples were investigated, and SMP emission spectra and the corresponding second derivative SMP spectra were obtained for all the samples. Numerous excitation and emission wavelengths were studied for detecting PAH-DNA adducts. Second derivative SMP spectra indicated the presence of PAH-DNA adducts, whereas the longer SMP emission region proved fruitful for detecting adducts in the placental DNA samples. The SMP results for the samples strongly implied that a variety of PAH-DNA adducts could be present.
This is the first attempt for the direct detection of polycyclic aromatic hydrocarbon (PAH)-DNA adducts in human placental DNA samples by solidmatrix phosphorescence (SMP). Six samples were investigated, and SMP emission spectra and the corresponding second derivative SMP spectra were obtained for all the samples. Numerous excitation and emission wavelengths were studied for detecting PAH-DNA adducts. Second derivative SMP spectra indicated the presence of PAH-DNA adducts, whereas the longer SMP emission region proved fruitful for detecting adducts in the placental DNA samples. The SMP results for the samples strongly implied that a variety of PAH-DNA adducts could be present.
The article contains sections titled: 1. Introduction 1.1. Comparison with Other Spectroscopic Methods 1.2. Development and Uses 2. Theoretical Principles 2.1. Electronic States and Orbitals 2.2. Interaction Between Radiation and Matter 2.2.1. Dispersion 2.2.2. Absorption 2.2.3. Scattering 2.2.4. Reflection 2.2.5. Band Intensity 2.3. The Lambert–BeerLaw 2.3.1. Definitions 2.3.2. Deviations from the Lambert ‐ Beer Law 2.4. Photophysics 2.4.1. Energy Level Diagram 2.4.2. Deactivation Processes 2.4.3. Transition Probability and Fine Structure of the Bands 2.5. Chromophores 2.6. Optical Rotatory Dispersion and Circular Dichroism 2.6.1. Generation of Polarized Radiation 2.6.2. Interaction with Polarized Radiation 2.6.3. Optical Rotatory Dispersion 2.6.4. Circular Dichroism and the Cotton Effect 2.6.5. Magnetooptical Effects 3. Optical Components and Spectrometers 3.1. Principles of Spectrometer Construction 3.1.1. Sequential Measurement of Absorption 3.1.2. Multiplex Methods in Absorption Spectroscopy 3.2. Light Sources 3.2.1. Line Sources 3.2.2. Sources of Continuous Radiation 3.2.3. Lasers 3.3. Selection of Wavelengths 3.3.1. Prism Monochromators 3.3.2. Grating Monochromators 3.3.3. Electro‐Acoustic and Opto‐Acoustic Wavelength Generation 3.4. Polarizers and Analyzers 3.5. Sample Compartments and Cells 3.5.1. Closed Compartments 3.5.2. Modular Arrangements 3.5.3. Open Compartments 3.6. Detectors 3.7. Optical Paths for Special Measuring Requirements 3.7.1. Fluorescence Measurement 3.7.2. Measuring Equipment for Polarimetry, ORD, and CD 3.7.3. Reflection Measurement 3.7.4. Ellipsometry 3.8. Effect of Equipment Parameters 3.9. Connection to Electronic Systems and Computers 4. Uses of UV ‐ VIS Spectroscopy in Absorption, Fluorescence, and Reflection 4.1. Identification of Substances and Determination of Structures 4.2. Quantitative Analysis 4.2.1. Determination of Concentration by Calibration Curves 4.2.2. Classical Multicomponent Analysis 4.2.3. Multivariate Data Analysis 4.2.4. Use in Chromatography 4.3. Fluorimetry 4.3.1. Inner Filter Effects 4.3.2. Fluorescene and Scattering 4.3.3. Excitation Spectra 4.3.4. Applications 4.4. Reflectometry 4.4.1. Diffuse Reflection 4.4.2. Color Measurement 4.4.3. Regular Reflection 4.4.4. Determination of Film Thickness 4.4.5. Ellipsometry 4.5. Resonance Methods 4.5.1. SurfacePlasmon Resonance 4.5.2. Grating Couplers 4.5.3. Other Evanescent Methods 4.5.4. Interferometric Methods 4.6. On‐Line Process Control 4.6.1. Process Analysis 4.6.2. Measurement of Film Thicknesses 4.6.3. Optical Sensors 4.7. Measuring Methods Based on Deviations from the Lambert – Beer Law 5. Special Methods 5.1. Derivative Spectroscopy 5.2. Dual‐Wavelength Spectroscopy 5.3. Scattering 5.3.1. Turbidimetry 5.3.2. Nephelometry 5.3.3. Photon Correlation Spectroscopy 5.4. Luminescence, Excitation, and Depolarization Spectroscopy, and Measurement of Lifetimes 5.5. Polarimetry 5.5.1. Sugar Analysis 5.5.2. Cellulose Determination 5.5.3. Stereochemical StructuralAnalysis 5.5.4. Use of Optical Activity Induced by a Magnetic Field 5.6. Photoacoustic Spectroscopy (PAS)
-The paper describes the applications of solid surface luminescence measurements in the fields of cryogenic and room temperature phosphorescence, fluorescence immunoassays, and other areas. In many examples highly specific and sensitive assays are obtained by combining luminescence measurements with thin layer chromatography, and other laminar methods such as electrophoresis. Thin layer phosphorimetry is a promising approach, and may encourage the development of phosphorescent labels analogous to the currently common fluorescent labels. Several useful qualitative applications of surface luminescence have also been described, including the identification of glass samples, and the inclusion of phosphorescent and fluorescent markers on postage stamps and related materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.