On a particular class of m-idempotent hyperrings, the relation ξ m * is the smallest strongly regular equivalence such that the related quotient ring is commutative. Thus, on such hyperrings, ξ m * is a new representation for the α * -relation. In this paper, the ξ m -parts on hyperrings are defined and compared with complete parts, α -parts, and m-complete parts, as generalizations of complete parts in hyperrings. It is also shown how the ξ m -parts help us to study the transitivity property of the ξ m -relation. Finally, ξ m -complete hyperrings are introduced and studied, stressing on the fact that they can be characterized by ξ m -parts. The symmetry plays a fundamental role in this study, since the protagonist is an equivalence relation, defined using also the symmetrical group of permutations of order n.