In this paper, we introduce generalized homographic transformations as hyperhomographies over Krasner hyperfields.These particular algebraic hyperstructues are quotient structures of classical fields modulo normal groups. Besides, we define some hyperoperations and investigate the properties of the derived hypergroups and H v -groups associated with the considered hyperhomographies. They are equipped hyperhomographies obtained as quotient sets of nondegenerate hyperhomographies modulo a special equivalence. Thus the symmetrical property of the equivalence relations plays a fundamental role in this constructions.
In this paper, we introduce generalized quadratic forms and hyperconics over quotient hyperfields as a generalization of the notion of conics on fields. Conic curves utilized in cryptosystems; in fact the public key cryptosystem is based on the digital signature schemes (DLP) in conic curve groups. We associate some hyperoperations to hyperconics and investigate their properties. At the end, a collection of canonical hypergroups connected to hyperconics is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.