This research was to explore the application value of three-dimensional computed tomography (CT) based on artificial intelligent algorithm in analyzing the characteristics of skin lesions in children with psoriasis. In this study, 15 children with psoriasis were selected as the observation group, and 15 children with other skin diseases were selected as the control group. The CT images were optimized, and the feature selection was carried out based on artificial intelligent algorithm. Firstly, the results were compared with the results of simple skin three-dimensional CT to determine the effectiveness. Then, the two groups of three-dimensional skin CT image features of skin psoriasis-like hyperplasia, Munro microabscess, dermal papillary vascular dilation, and squamous epithelium based on intelligent algorithms were compared. After comparison, the detection rate of psoriasis-like hyperplasia, Munro microabscess, dermal papillary vascular dilation, and squamous epithelium in the observation group was higher than that in the control group, with significant difference and statistical significance (
P
<
0.05
). In addition, the sensitivity of psoriasis-like hyperplasia, Munro microabscess, dermal papilla vascular dilatation, and squamous epithelium in children with psoriasis was 80.0%, 86.7%, 80.0%, and 93.3%, respectively. The specificity of psoriasis-like hyperplasia, Munro microabscess, dermal papilla vascular dilatation, and squamous epithelium in children with psoriasis was 86.7%, 93.3%, 60.0%, and 73.3%, respectively. The results showed that Munro microabscess and psoriasis-like hyperplasia had high sensitivity and specificity in all diagnostic items, which could be used as important features of skin lesion sites in the diagnosis of psoriasis in children. The research provides a basis for the clinical diagnosis of psoriasis in children, which is worthy of clinical promotion.