This paper reviews numerical methods used to simulate desiccation cracks in clayey soils. It examines five numerical approaches: Finite Element (FEM), Lattice Boltzmann (LBM), Discrete Element (DEM), Cellular Automaton (CAM), and Phase Field (PFM) Methods. The FEM is widely used to capture moisture diffusion, shrinkage, and cracking during drying. LBM is used to simulate fluid flow in clayey soils, while the DEM focuses on capturing the behavior of individual particles and their interactions. CAM simplifies crack evolution with computational efficiency, while PFM provides a continuous representation of crack formation and propagation. The author discusses the complexity of the problem, the continuum mechanics governing and constitutive equations that describe it, and the influence of various factors such as the multiphase nature of soils, heterogeneity, nonlinearities, coupling, scales of analysis, and computational aspects. The review highlights the characteristics, strengths, and limitations of each method. It emphasizes the importance of appropriate method selection for every problem depending on the aim of the analysis. The article concludes by reviewing the integration of multiple numerical methods to enhance the simulation of desiccation cracks in clayey soils.