The accelerometer plays a crucial role in inertial navigation. The performance of conventional accelerometers such as lasers is usually limited by the sensing elements and shot noise limitation (SNL). Here, we propose an advanced development of an accelerometer based on atom–light quantum correlation, which is composed of a cold atomic ensemble, light beams, and an atomic vapor cell. The cold atomic ensemble, prepared in a magneto-optical trap and free-falling in a vacuum chamber, interacts with light beams to generate atom–light quantum correlation. The atomic vapor cell is used as both a memory element storing the correlated photons emitted from cold atoms and a bandwidth controller through the control of free evolution time. Instead of using a conventional sensing element, the proposed accelerometer employs interference between quantum-correlated atoms and light to measure acceleration. Sensitivity below SNL can be achieved due to atom–light quantum correlation, even in the presence of optical loss and atomic decoherence. Sensitivity can be achieved at the
ng
/
Hz
level, based on evaluation via practical experimental conditions. The present design has a number of significant advantages over conventional accelerometers such as SNL-broken sensitivity, broad bandwidth from a few hundred Hz to near MHz, and avoidance of the technical restrictions of conventional sensing elements.