Accurate monitoring of motion and sleep states is critical for human health assessment, especially for a healthy life, early diagnosis of diseases, and medical care. In this work, a smart wearable sensor (SWS) based on a dual-channel triboelectric nanogenerator was presented for a real-time health monitoring system. The SWS can be worn on wrists, ankles, shoes, or other parts of the body and cloth, converting mechanical triggers into electrical output. By analyzing these signals, the SWS can precisely and constantly monitor and distinguish various motion states, including stepping, walking, running, and jumping. Based on the SWS, a fall-down alarm system and a sleep quality assessment system were constructed to provide personal healthcare monitoring and alert family members or doctors via communication devices. It is important for the healthy growth of the young and special patient groups, as well as for the health monitoring and medical care of the elderly and recovered patients. This work aimed to broaden the paths for remote biological movement status analysis and provide diversified perspectives for true-time and long-term health monitoring, simultaneously.