The microstrip patch antenna is used in various communication applications including cellular phones, satellites, missiles, and radars, due to its several attractive features such as small size and weight, low cost, and easy fabrication. The microstrip patch antenna consists of a top radiating patch, a bottom ground plane, and a dielectric substrate in between. The patch can have different shapes, the rectangular patch being the most commonly used. In practice, the microstrip antenna suffers from narrow bandwidth and low gain efficiency. This paper aims to enhance the bandwidth and efficiency of a rectangular-patch antenna using the High-Frequency Structure Simulator (HFSS). Initially different patch sizes and substrate materials are investigated and optimal antenna parameters are achieved. Then, the antenna performance is further enhanced by inserting single and double slot designs into the patch. Two cost-effective feeding methods are involved in the investigation. The antenna is designed to operate in the Super High Frequency (SHF) band.