Soil scour near a bridge pier foundation is one of the leading causes of bridge failures. Traditional vibration-based scour monitoring methods are nearly incapable of quantifying scour levels using a single acceleration response without knowledge of excitation information. In this paper, a new output-only scour level prediction method is introduced via the integration of an unscented Kalman filter (UKF), random decrement (RD), and newly derived continuous Euler–Bernoulli beam addressing river water, traffic loads, and the linear and nonlinear behavior of sediments around the pier as external effects. We conducted extensive simulation studies and applied the method to an existing medium-span bridge with a steel girder and concrete deck in service in the province of Manitoba, Canada. These studies show that our proposed method can accurately estimate scour levels using only one accelerometer, which was validated with an independent bathymetric survey of the soil level at the pier foundation. Furthermore, three different linear and nonlinear soil profiles representing the soil behavior around the pier were also investigated as case studies in the scour level estimation process. The results confirm that a cubic function exhibits the best performance in quantifying the scour level around bridge piers.