Co-sensitization of two or more dyes with complementary absorption spectra on a semiconductor film
is an effective approach to enhance the performance of a dye-sensitized solar cell (DSSC). Porphyrin
sensitizer YD2-oC8 showed outstanding photovoltaic performance co-sensitized with an organic dye to
cover the entire visible spectral region, 400–700 nm. To promote the light-harvesting capability beyond
700 nm, a porphyrin dimer (YDD6) was synthesized for a co-sensitized system. We report a systematic
approach for engineering of molecular co-sensitization of TiO2 films in a cocktail solution containing
YD2-oC8, an organic dye (CD4) and YDD6 in a specific molar ratio to optimize the photovoltaic
performance of the device. The resulting device showed panchromatic spectral features in the IPCE
action spectrum in the region 400–700 nm attaining efficiencies of 75–80%; the spectrum is extended to
the near-IR region attaining 40–45% in 700–800 nm region, giving JSC/mA cm
2 ¼ 19.28, VOC/mV ¼
753, FF ¼ 0.719, and h ¼ 10.4% under standard AM 1.5 G one-sun irradiation. This performance is
superior to what is obtained from the individual single-dye devices and the two-dye co-sensitized
systems. The shifts of TiO2 potential upon dye uptake and the kinetics of charge recombination were
examined through measurements of the charge extraction (CE) and intensity-modulated photovoltage
spectroscopy (IMVS), respectively. Five co-sensitized systems were investigated to demonstrate that
suppression of dye aggregation of YDD6 in the co-sensitized film is a key factor to further improve the
device performance