Three alkoxy-wrapped push-pull porphyrins were designed and synthesized for dye-sensitized solar cell (DSSC) applications. Spectral, electrochemical, photovoltaic and electrochemical impedance spectroscopy properties of these porphyrin sensitizers were well investigated to provide evidence for the molecular design.
In this work, we used the chemical vapor transport (CVT) method to grow PbI2 crystals using iodine as a self-transporting agent. The crystals’ structure, composition, and uniformity were confirmed by X-ray diffraction (XRD) and electron probe microanalysis (EPMA) measurements. We investigated the band gap energy using absorption spectroscopy measurements. Furthermore, we explored the temperature dependence of the band gap energy, which shifts from 2.346 eV at 300 K to 2.487 eV at 20 K, and extracted the temperature coefficients. A prototype photodetector with a lateral metal–semiconductor–metal (MSM) configuration was fabricated to evaluate its photoelectric properties using a photoconductivity spectrum (PC) and persistent photoconductivity (PPC) experiments. The resonance-like PC peak indicates the excitonic transition in absorption. The photoresponse ILight/IDark-1 is up to 200%.
The objective of this study is to decompose gaseous acetone ((CH3)2CO) by a self-prepared nano-sized composite TiO2/In2O3/SnO2 film photocatalyst that was prepared by a multi-target vacuum sputter operating at a vacuum pressure of 3 mtorr. The operating parameters investigated for the sputtering process included oxygen to argon ratio (O2/Ar), sputtering temperature, substrate materials, substrate layers, and sputtering duration. The nano-sized composite TiO2/In2O3/SnO2 film photocatalyst was mainly composed of anatase with a few rutile. The surface roughness of the TiO2/In2O3/SnO2 film photocatalyst in terms of RMS ranged from 2.292 to 7.533 nm, while the thickness of the single- and double-layer film photocatalysts were 473.5 and 506.0 nm, respectively. Gaseous acetone was initially injected into and further degraded in a self-designed batch photocatalytic reactor containing the nano-sized composite TiO2/In2O3/SnO2 film photocatalyst. Experimental results indicated that the highest acetone degradation efficiency of 99.9% was obtained at 50°C and 1 atm with the incident of near-UV illuminated by a fluorescent black light lamp. Under the incidence of blue light (430-500 nm), the reaction rates of acetone decomposition were 2.353x10-5 and 3.478x10-5 μmole/cm2-sec for using single- and double-layer TiO2/In2O3/SnO2 film photocatalysts, respectively.
This paper presents the characteristics and optical properties of lead iodide (PbI 2 ) grown by the chemical vapor transport method. X-ray diffraction, Raman spectra, and scanning electron microscope methods were used to characterize the crystal structure and surface morphology of PbI 2 material. The temperature-dependent photoconductivity and reflection spectra are used to investigate the direct band gap energies of PbI 2 in the temperature range from 20 to 300 K. The parameters that describe the temperature variation of the energies of direct band gap energies are determined. The optical response was also investigated by time-resolved photoresponse and frequency-dependent photo responsivity investigations. Possible mechanisms of the kinetic decay processes of carriers are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.