This paper presents a multiband metamaterial (MM) absorber based on a novel spiral resonator with continuous, dual, and opposite P-shape. The full wave analysis shows 80.06% to 99.95% absorption at frequencies range for Ku and K bands for several substrate materials of 100 mm2 area. The results indicate that the absorption rate remains similar for different polarizing angles in TEM mode with different substrates. With FR4 (Flame Retardant 4) substrate and 64 mm2 ground plane, the design acts as single negative (SNG) MM absorber in K band resonance frequencies (19.75–21.37 GHz) and acts as double negative (DNG) absorber in Ku band resonance frequencies (15.28–17.07 GHz). However, for Rogers 3035 substrate and 36 mm2 ground plane, it acts as an SNG absorber for Ku band resonance frequency 14.64 GHz with 83.25% absorption and as a DNG absorber for K band frequencies (18.24–16.15 GHz) with 83.69% to 94.43% absorption. With Rogers 4300 substrate and 36 mm2 ground plane, it acts as an SNG absorber for Ku band at 15.04 GHz with 89.77% absorption and as DNG absorber for K band frequencies (22.17–26.88 GHz) with 92.87% to 93.72% absorption. The design was fabricated with all three substrates and showed quite similar results as simulation. In comparison with other broadband absorbers, this proposed MM absorber illustrated broad incidence angles in TEM mode.