This chapter covers recent advances in the development of nanostructurebased material technologies to benefit next-generation electro-optical (EO) and infrared (IR) sensor and imager applications. Nanostructured materials can now be integrated into a variety of technological platforms, offering novel optoelectrical properties that greatly enhance device performance in many practical applications. Use of novel carbon nanotube (CNT) based materials has enabled new approaches for applying nanostructure design methodologies that can offer enhanced performance for low-cost bolometers for IR detection and imaging applications. We will discuss the development of carbon nanostructure based infrared detectors and arrays, including concepts that will provide high performance, high frame rate, and uncooled microbolometers for mid-wave infrared (MWIR) and long-wave infrared (LWIR) band detection. In addition, nanostructured antireflection (AR) coatings are being developed that significantly enhance transmission over a broad spectrum, providing substantial improvements in device performance compared to conventional thin film AR coatings. These nanostructured AR coatings have been demonstrated over visible to LWIR spectral bands on various substrates. In this chapter, we discuss both theoretical and measured results of these diverse nanostructure technologies to advance sensing performance over a wide range of spectral bands for defense, space, and commercial applications.